Cautionary Statement Regarding Forward-Looking Statements

Certain statements in this presentation that are forward-looking and not statements of historical fact are forward-looking statements within the meaning of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and are forward-looking information within the meaning of Canadian securities laws (collectively “forward-looking statements”). The company cautions that such statements involve risks and uncertainties that may materially affect the company's results of operations. Such forward-looking statements are based on the beliefs of management as well as assumptions made by and information currently available to management. Actual results could differ materially from those contemplated by the forward-looking statements as a result of certain factors, including but not limited to the ability to establish that potential products are efficacious or safe in preclinical or clinical trials; the ability to establish or maintain collaborations on the development of therapeutic candidates; the ability to obtain appropriate or necessary governmental approvals to market potential products; the ability to obtain future funding for developmental products and working capital and to obtain such funding on commercially reasonable terms; the company's ability to manufacture product candidates on a commercial scale or in collaborations with third parties; changes in the size and nature of competitors; the ability to retain key executives and scientists; and the ability to secure and enforce legal rights related to the company's products, including patent protection. A discussion of these and other factors, including risks and uncertainties with respect to the company, is set forth in the Company's filings with the Securities and Exchange Commission and the Canadian securities authorities, including its Annual Report on Form 10-K filed with the Securities and Exchange Commission on February 25, 2019, and filed with the Canadian security authorities at sedar.com on February 25, 2019, as supplemented or amended by the Company's Quarterly Reports on Form 10-Q. The company disclaims any intention or obligation to revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.
Overview

• Leveraging significant immunology expertise to address unmet medical needs in both INFECTIOUS DISEASE and IMMUNO-ONCOLOGY

• Advancing prevention and treatment of HEPATITIS B:
 • *Sci-B-Vac®*: Only commercially-approved trivalent Hepatitis B vaccine – approved in 11 countries worldwide and currently in a Phase III program in the U.S., Europe, and Canada
 • *VBI-2601*: Immuno-therapeutic in development in a collaboration with Brii Biosciences for a functional cure for chronic Hepatitis B

• Integrating CYTOMEGALOVIRUS (CMV) EXPERTISE with a proprietary enveloped virus-like particle (eVLP) platform technology to develop next-generation vaccines:
 • *VBI-1901*: GLIOBLASTOMA (GBM) vaccine immunotherapeutic candidate (currently in Phase I/IIa study)
 • *VBI-1501*: Prophylactic CMV vaccine candidate (positive topline Phase I data announced in May 2018)

• Most recent financing in December 2018 of $43M, led by Perceptive Advisors
VBI Vaccines Pipeline

<table>
<thead>
<tr>
<th>INFECTION DISEASE</th>
<th>PRE-CLINICAL</th>
<th>PHASE I</th>
<th>PHASE II</th>
<th>PHASE III</th>
<th>APPROVED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B – Prophylaxis</td>
<td>Sci-B-Vac® VLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Approved in Israel + 10 countries worldwide</td>
</tr>
</tbody>
</table>
| **Hepatitis B – Therapeutic** | VBI-2601 VLP | | | | | • US, EU, CAN in ongoing Phase III
 • Topline data from CONSTANT Phase III expected around year-end 2019 |
| **Cytomegalovirus (CMV)** | VBI-1501 eVLP | | | | | • Positive Phase I data announced May 2018
 • IND filing expected around year-end 2019 |
| **Zika** | VBI-2501 eVLP | | | | | • Candidate selected |

<table>
<thead>
<tr>
<th>IMMUNO-ONCOLOGY</th>
<th>PRE-CLINICAL</th>
<th>PHASE I</th>
<th>PHASE II</th>
<th>PHASE III</th>
<th>APPROVED</th>
<th>STATUS</th>
</tr>
</thead>
</table>
| **Glioblastoma Multiforme (GBM)** | VBI-1901 eVLP | | | | | • Ongoing Phase I/IIa
 • Initial immunologic data from Part B expected year-end 2019 |
| **Medulloblastoma** | VBI-1901 eVLP | | | | | • Preclinical work ongoing |
Recent Key Achievements

NOVEMBER 2018 – AUGUST 2019

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2019</td>
<td>First patient dosed in Part B of ongoing Phase I/IIa study of VBI-1901 (GBM)</td>
</tr>
<tr>
<td>June 2019</td>
<td>Announcement of addition to Russell 2000® and 3000® Indexes</td>
</tr>
<tr>
<td>June 2019</td>
<td>Announcement of positive top-line data from the PROTECT Phase III study of Sci-B-Vac®</td>
</tr>
<tr>
<td>June 2019</td>
<td>ASCO presentation of data from Part A of ongoing Phase I/IIa study of VBI-1901 (GBM)</td>
</tr>
<tr>
<td>April 2019</td>
<td>Appointment of Dr. Vlad Popovic, M.D., as VP of Clinical Development & Medical Affairs</td>
</tr>
<tr>
<td>April 2019</td>
<td>Appointment of Joanne Cordeiro to Board of Directors</td>
</tr>
<tr>
<td>April 2019</td>
<td>Announcement of late-breaking poster at EASL 2019 highlighting data from three previously-conducted clinical studies of Sci-B-Vac® in subjects age 18-45 years</td>
</tr>
<tr>
<td>February 2019</td>
<td>3rd Positive DSMB review in Phase I/IIa study of VBI-1901 (GBM)</td>
</tr>
<tr>
<td>January 2019</td>
<td>Appointment of Blaine McKee, Ph.D., to Board of Directors</td>
</tr>
<tr>
<td>December 2018</td>
<td>Announcement of planned Phase II clinical study design for VBI-1501 (CMV)</td>
</tr>
<tr>
<td>December 2018</td>
<td>Closed Public Offering for gross proceeds of $42.9M</td>
</tr>
<tr>
<td>December 2018</td>
<td>Announcement of Brii Biosciences License and Collaboration Agreement for the development of a functional cure for Hepatitis B</td>
</tr>
<tr>
<td>November 2018</td>
<td>Announcement of early data from Phase I/IIa study of VBI-1901 in recurrent GBM patients</td>
</tr>
</tbody>
</table>
Hepatitis B - Prophylaxis

a. SCI-B-VAC®

Only commercially-available trivalent vaccine containing pre-S1, pre-S2, and S antigens of Hepatitis B virus
Chronic HBV is a Significant and Increasing Unmet Need in US & EU

There are more than 2,000,000,000 individuals WW with serological evidence of Hepatitis B, of these ~292M are chronic carriers

U.S.

- CDC estimates that anywhere from 850,000 – 2.2M people in the U.S. are chronically infected with Hepatitis B
- Estimated new cases of Hepatitis B have been increasing since 2012, from roughly 18,800 new cases in 2012 to 21,000 in 2016
- The CDC has determined this increase is largely due to the ongoing opioid epidemic

Europe

- The European Centre for Disease Prevention and Control (ECDC) estimates that in the EU/EEA ~5M people are chronically infected with Hepatitis B
- Among EU/EEA countries that consistently report, the rate of new cases increased from 6.7/100,000 in 2008 to 10.2/100,000 in 2017, with UK reporting roughly 62% of all new chronic cases
- The increase in Europe is largely due to the increased population migration and refugee crises – a 2012 study noted the prevalence of HBsAg in the base EU population varied (0.01-0.7%), but the prevalence of HBsAg in the three largest migrant groups in each country was similar, ~4%

Transmission of Chronic Hepatitis B

Chronic Hepatitis B is most commonly transmitted from mother to child (pediatrics) or through nosocomial transmission (i.e. patients exposed in the healthcare setting).

2017 Transmission of Hepatitis B Cases by Acute and Chronic Disease Status (EU/EEA)

*Nosocomial transmission includes hospitals, nursing homes, psychiatric institutions, and dental services. This category refers mainly to patients exposed through healthcare settings, distinct from “needle-stick and other occupational exposure” which refers to staff.

Source: European Center for Disease Prevention and Control (ECDC) Hepatitis B Annual Epidemiological Report for 2017
HBV Vaccination Rates : U.S.

- In 1991, the ACIP recommended a comprehensive HBV vaccination program: universal vaccination for children and for high-risk populations.

- Despite this recommendation being in place for ~15 years, coverage rates among US adults remain low.

- During 2010-2015, hepatitis B vaccination coverage decreased among all adults aged ≥ 19 years.

- Vaccination rates have remained stable, however, among adults aged ≥ 19 years with chronic liver conditions and among healthcare providers.

Reported US Hepatitis B Vaccination Coverage - 2015

<table>
<thead>
<tr>
<th>Category</th>
<th>Coverage Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otherwise Healthy</td>
<td></td>
</tr>
<tr>
<td>Adults aged ≥ 19 years</td>
<td>24.6%</td>
</tr>
<tr>
<td>Adults aged 19-49 years</td>
<td>32.0%</td>
</tr>
<tr>
<td>Adults age ≥ 50 years</td>
<td>16.5%</td>
</tr>
<tr>
<td>High-Risk</td>
<td></td>
</tr>
<tr>
<td>Chronic Liver Conditions</td>
<td>27.4%</td>
</tr>
<tr>
<td>Diabetics – Age 19-59 years</td>
<td>24.4%</td>
</tr>
<tr>
<td>Diabetics – Age ≥ 60 years</td>
<td>12.6%</td>
</tr>
<tr>
<td>Healthcare Providers ≥ 19 years</td>
<td>64.7%</td>
</tr>
</tbody>
</table>

Source: 2015 CDC Surveillance of Vaccination Coverage Among Adult Populations.
HBV Vaccination Rates: Europe

- In 1992, the World Health Assembly recommended the inclusion of Hepatitis B vaccination in all national immunization programs.
- By 2004, the majority of European member states had introduced the vaccine, either as universal infant, universal newborn, or universal adolescent.
- A number of EU member states, however, had not introduced the vaccine into the routine program – all of these were northern European countries.

RECOMMENDATION FOR HEPATITIS B VACCINATION BY COUNTRY (VENICE II SURVEY)

- HBV vaccination included in the routine childhood vaccination & recommended for high risk groups incl. healthcare workers (HCWs):
 - 74% of surveyed countries (20/27)
- HBV vaccination only recommended for high-risk groups incl. HCWs
 - 26% of surveyed countries (7/27)
- Countries not included in VENICE II survey

Despite recommendations, estimated adult HBV vaccine coverage rates vary greatly (e.g. 8% in Denmark, 33% in Germany)

Note: Since this survey, the UK implemented routine childhood vaccination against Hepatitis B (in Aug. 2017)

Key Unmet Medical Need and Market Segmentation

<table>
<thead>
<tr>
<th>Target Population</th>
<th>Key Product Attributes Driving Use</th>
<th>Est. Unvaccinated Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADULT POPULATION (AGE 18+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Young, “Otherwise Healthy” | • Public service sector workers (incl. HCWs)
• Military
• Pre-diabetics | • Earlier seroprotection
• Cost | US : 5M+ | EU : 5M+
TOTAL: 10M+
[conservative estimate] |
| Older Adults | • Age 45+ | • Superior seroprotection rates
• Safety | US : 50M | EU : 35M
TOTAL: 85M |
| Immuno-Compromised/High-Risk | • Diabetics
• CKD/ESRD patients
• Other high-risk populations | • Higher seroprotection rates
• Safety | US : 30M | EU : 20M
TOTAL: 50M |
| **PEDIATRIC POPULATION (AGE 0-17)** | | |
| High-risk, Immuno-compromised Newborns | *Children born:*
• with immuno-compromising conditions (e.g. Thalassemia)
• to HBV-infected mothers
• in high endemic areas | • Higher seroprotection rates
• Safety | • ~8M births each year in US/EU
• ~75,000 births to HBV+ mothers
• ~1/2,000 children are born with a primary immuno-compromising condition |
Sci-B-Vac®: Importance of Trivalent Conformation

<table>
<thead>
<tr>
<th>2ND GENERATION VACCINES</th>
<th>SCI-B-VAC®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral antigens mimicked:</td>
<td></td>
</tr>
<tr>
<td>S Protein</td>
<td>✓</td>
</tr>
<tr>
<td>Pre-S1</td>
<td>✓</td>
</tr>
<tr>
<td>Pre-S2</td>
<td>✓</td>
</tr>
<tr>
<td>Adjuvant:</td>
<td>Next-generation Adj. (e.g. TLRs)</td>
</tr>
<tr>
<td>Derivation:</td>
<td>rDNA yeast</td>
</tr>
<tr>
<td></td>
<td>Mammalian cell</td>
</tr>
</tbody>
</table>

• Pre-S1 antigen induces key neutralizing antibodies that block virus receptor binding

• Published data demonstrates that T cell response to pre-S1 and pre-S2 antigens can further boost responses to the S antigens, resulting in a more immunogenic response
Sci-B-Vac®: Two Ongoing Phase III Studies to Support Approval in U.S., Europe, and Canada

<table>
<thead>
<tr>
<th>Phase III Study</th>
<th>PROTECT</th>
<th>CONSTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N size</td>
<td>1,607</td>
<td>~2,900</td>
</tr>
<tr>
<td>Control Vaccine</td>
<td>Engerix-B® (GSK)</td>
<td>Engerix-B® (GSK)</td>
</tr>
</tbody>
</table>
| **Primary Endpoint(s)** | Based on seroprotection rates (SPR):
 i. Non-inferiority in adults ≥ age 18
 ii. Superiority in adults ≥ age 45 | Consistency of immune response as measured by Geometric Mean Concentration (GMC) of antibodies across three consecutively manufactured lots of Sci-B-Vac® |
| **Secondary Endpoint(s)** | i. Safety and tolerability
 ii. Non-inferiority of SPR in adults ≥ age 18 after 2 doses of Sci-B-Vac® vs. 3 doses of Engerix-B® | Safety, tolerability, and SPR |
| **Top-Line Data Readout** | June 2019 | Expected around year-end 2019 |
PROTECT Study Subject Disposition

Subjects screened (n=2,472)

Screening failure (n=865, 35%)

Randomized (n=1,607) at 28 clinical study sites in U.S., Europe, and Canada

Engerix-B® (n=811) → Full Analysis Set → Sci-B-Vac® (n=796)

Age:
- 18-44 years: 154 (19%)
- 45-64 years: 361 (45%)
- 65+ years: 296 (37%)

Gender:
- Male: 303 (37%)
- Female: 508 (63%)

Withdrawn: 42 (5.2%)

Completed study (n=769) ← Per Protocol Set →

Age:
- 18-44 years: 145 (18%)
- 45-64 years: 355 (45%)
- 65+ years: 296 (37%)

Gender:
- Male: 315 (40%)
- Female: 481 (60%)

Withdrawn: 40 (5.0%)

Completed study (n=756)
Both PROTECT Co-Primary Endpoints Successfully Met

Co-Primary Endpoints at Day 196, 4 weeks post-3rd vaccination:

1. Non-Inferiority of seroprotection rate (SPR) achieved in all subjects age 18+

 - **Engerix-B 20µg**
 - **N = 723**
 - **Percent HBsAg Seroprotection**: 76.5%

 - **Sci-B-Vac 10µg**
 - **N = 718**
 - **Percent HBsAg Seroprotection**: 91.4%

 - **Diff**: 14.9%
 - **95% CI**: [11.2% to 18.6%]

2. Statistical and clinical superiority, as defined in the protocol, achieved in subjects age 45+

 - **Engerix-B 20µg**
 - **N = 627**
 - **Percent HBsAg Seroprotection**: 73.1%

 - **Sci-B-Vac 10µg**
 - **N = 625**
 - **Percent HBsAg Seroprotection**: 89.4%

 - **Diff**: 16.4%
 - **95% CI**: [12.2% to 20.7%]

- **Non-inferiority**: If the lower bound of the 95% confidence interval (CI) of the difference between the SPR in the Sci-B-Vac® arm minus the SPR in the Engerix-B® arm is > -5%, Sci-B-Vac® will be declared non-inferior to Engerix-B®.
- **Statistical superiority**: If the lower bound of the same 95% CI is greater than 0%, Sci-B-Vac® will be declared statistically superior to Engerix-B®.
- **Clinical superiority**: If the lower bound of the same 95% CI is > 5%, Sci-B-Vac® will be declared clinically superior to Engerix-B®.

PROTECT Primary Endpoints Successfully Met:

- All subjects age 18+
- Subjects age 45+
Kinetics of Seroprotection Rates by Age Group

All Ages (18+)

Seroprotection Rate (SPR%)

- **Engerix-B**
 - 0 months: 16.0%
 - 2 months: 51.5%
 - 4 months: 76.5%
 - 6 months: 91.4%
 - 8 months: 89.0%
 - 10 months: 68.8%

- **Sci-B-Vac**
 - 0 months: 7.7%
 - 2 months: 23.9%
 - 4 months: 66.0%
 - 6 months: 76.5%
 - 8 months: 91.4%
 - 10 months: 89.0%

Ages 18-44

Seroprotection Rate (SPR%)

- **Engerix-B**
 - 0 months: 28.8%
 - 2 months: 76.0%
 - 4 months: 87.2%
 - 6 months: 99.2%
 - 8 months: 97.5%
 - 10 months: 87.1%

- **Sci-B-Vac**
 - 0 months: 9.6%
 - 2 months: 37.0%
 - 4 months: 39.0%
 - 6 months: 91.1%
 - 8 months: 91.1%
 - 10 months: 87.1%

Vaccinations
Time of analysis of co-primary endpoints
Seroconversion Rates in Subgroup Populations

SPR of Sci-B-Vac® vs. Engerix-B® was statistically significantly higher in all key subgroup analyses of adults age ≥ 18 years, at Day 196, 4 weeks post-3rd vaccination, including:

- **Diabetics**
 - 58.3% Engerix-B® vs. 83.3% Sci-B-Vac®
 - SPR difference: 25.0%; 95% CI [8.4%, 40.4%]

- **Subjects with a Body Mass Index (BMI) > 30**
 - 68.1% Engerix-B® vs. 89.2% Sci-B-Vac®
 - SPR difference: 21.1%; 95% CI [14.3%, 28.0%]
Anti-HBsAg Titers in Subgroup Populations

5-8x fold higher antibody GMC is maintained for patients who received Sci-B-Vac® vs. Engerix-B® regardless of age, BMI, or diabetes status.

Error bars = SE; The GMC and SE are calculated based on log10-transformed data, then transformed back to Anti-HBsAg Antibody titer.
Summary of PROTECT Safety Data

OVERALL:

• No safety signals observed in PROTECT
• Sci-B-Vac® safety profile consistent with previous studies and post-marketing use (Israel)
• High rate of completion of vaccinations, 96.8% and 95.2% for Engerix-B® and Sci-B-Vac®, respectively
• Low rate of vaccine discontinuation due to non-serious adverse events (AEs) of 0.4% vs. 0.4% and due to SAEs of 0.2% vs. 0.3% for Engerix-B® and Sci-B-Vac®, respectively

REACTOGENICITY – SOLICITED AEs:

• Higher rates of mild-to-moderate injection site pain, tenderness and myalgia reported by subjects receiving Sci-B-Vac® compared to Engerix-B®
• Reactogenicity symptoms generally resolved without intervention within 1-7 days
• No increase in reactogenicity symptoms over the 3-dose vaccination schedule
PROTECT Data Summary & Next Steps

- PROTECT top-line data showed Sci-B-Vac® at 10µg to have higher rates of protection in all adults, when compared with Engerix-B® at 20µg, with statistical and clinical superiority in adults age 45 years and older.

- At all time points, on a per-visit basis, SPR of Sci-B-Vac® was statistically significantly higher than SPR of Engerix-B®, indicating a faster time to seroprotection.

- Subgroup analyses show that Sci-B-Vac® elicits statistically significantly higher SPR compared with Engerix-B® in key immunocompromised populations including obese individuals, diabetics, and elderly.

- This data reaffirms the clean safety profile of the vaccine, with no safety signals observed.

- Data from CONSTANT is expected to expand the safety data base as well as provide additional efficacy data in the adult population age 18-45 years.

NEXT STEPS:

- Around year-end 2019: CONSTANT top-line data expected

Subject to successful completion of CONSTANT:

- Beginning mid-year 2020: Expected submissions of applications for regulatory approvals in the U.S., Europe, and Canada.
Hepatitis B - Therapeutic

b. VBI-2601

Potential to contribute to a functional cure by inducing and sustaining broad and effective immunity against chronic Hepatitis B infection
Scientific consensus is that a functional cure is within reach, but will likely be achieved through a combination approach

A functional cure will likely require the achievement of the below:

1. Drive down hepatitis B virus (HBV) DNA
2. Drive down immuno-suppressive HBV S-antigen
3. Achieve long-term immunologic control

Consensus is building that an immuno-therapeutic would be needed to achieve long-term immunologic control and restore the body’s defense against hepatitis B infection
VBI-2601 Well Positioned as an Immuno-Therapeutic Component of a Functional Cure for Hepatitis B

VBI-2601 is designed to impact circulating virus (via anti-S immunity – step 7), viral entry (via pre-S1 immunity – step 1), and infected hepatocytes (via T-cell immunity – step 8)

Current NUCs & next-generation therapies impact intracellular steps downstream of transcription (steps 3, 4, & 5)
Brii Biosciences License & Collaboration Agreement

In December 2018, VBI announced a license and collaboration agreement with Brii Biosciences ("Brii Bio") to develop a functional cure for Hepatitis B

• Under the agreement, VBI and Brii Bio will collaborate in the development of the product candidate through to completion of a proof-of-concept clinical trial, following which, Brii Bio will be responsible for funding all development in the licensed territory – China, Hong Kong, Macau, and Taiwan

• VBI received gross proceeds of $11 million, consisting of a $4M upfront payment and a $7M equity investment at $3.05 per share

• VBI is eligible to receive an additional $117.5 million in potential milestone payments and potential low double-digit royalties on commercial sales in the licensed territory

• VBI will retain all rights outside of the licensed territory with respect to the treatment of hepatitis B
Program Milestones : VBI-2601 (Tx HBV)

☑️ **December 2018** : License and collaboration agreement announced with Brii Biosciences for up to $129M + royalties to develop a functional cure for hepatitis B

☑️ **January 2019** : Initiation of pre-clinical studies

☒ **Q4 2019** : Expected start of clinical proof-of-concept Phase II study in subjects with chronic hepatitis B

☒ **H2 2020** : Initial human proof-of-concept Phase II data expected
Enveloped Virus-Like Particle ("eVLP") Vaccine Technology
eVLPs are a 3rd-Generation Class of Synthetic Vaccines

- eVLPs are the same size and structure as enveloped viruses, presenting antigens in their natural state for an improved immune response.
- The foundation of the eVLP Platform is a stable, protein-based core which has the flexibility to express additional vaccine antigens of interest.

Electron Microscopy image of VBI’s CMV eVLPs captured at Scripps Institute.
Two Candidates from eVLP Platform Technology Target CMV-Associated Indications

![Diagram showing gB Envelope Antigen and pp65 Antigen]

<table>
<thead>
<tr>
<th>Attributes</th>
<th>VBI-1501</th>
<th>VBI-1901</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present antigen in natural conformation</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Broadly Reactive Neutralizing Antibodies</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Polyvalent Immune Response</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Potent Th1 Cellular Immunity for Therapeutic Applications</td>
<td>CD4+</td>
<td>CD8+</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

VBI-1501
- Monovalent gB-G for Prevention of Infectious Disease Indications

VBI-1901
- Bivalent – pp65 + gB for Therapeutic Immuno-Oncology
CMV eVLP Vaccine – VBI-1501

eVLP vaccine candidate potently expresses a modified-form of the gB antigen, which is functionally differentiated from other gB approaches.
Impact and Risks of Cytomegalovirus (CMV)

Birth Defects (Congenital Infection):

- Congenital CMV is a leading cause of birth defects worldwide
- A first exposure during pregnancy can lead to death, blindness, deafness, and developmental delays of the newborn
- ~30,000 infants are born in U.S. with CMV annually
- 5,000+ will develop permanent impairments (more impacted births than Downs Syndrome)
- Direct economic costs of CMV infection exceeds $3.0B per year in U.S.
- No approved treatment or prevention
- ~$1B U.S. annual market with a $5B catch-up market opportunity

Transplant Rejection/Mortality:

- CMV is also a leading cause of transplant rejection in both the solid organ transplant and the stem-cell transplant settings
- Over 100,000 individuals in the U.S. are on the waiting list to receive a solid-organ transplant
- Matching based on CMV sero-status is not practical given other constraints (e.g. timely organ supply)
- Despite anti-viral pretreatment, CMV status of both recipient and donor still has a major impact on organ and recipient survival
Summary of Phase I Study Results

Phase I Study in 128 CMV-Negative Healthy Adults (18-40 years)

• VBI-1501 is safe and well tolerated at all doses tested, with and without the adjuvant alum, with no concern about evaluating VBI-1501A at higher doses

• VBI-1501A is immunogenic, even at a low dose
 o **gB antibody binding titers** induced at all dose levels, with clear evidence of dose-dependent boosting after each vaccination
 o **Neutralizing antibodies against fibroblast cell infection** were comparable to those from CMV-positive controls in 100% of subjects receiving the highest dose
 o **Neutralizing antibodies against epithelial cell infection** had a correlation with higher gB binding titers and fibroblast cell neutralizing activity, suggesting the modified form of the gB-G used in VBI-1501A qualitatively enriches for functional nAb activity
 o **Highest dose** tested (2.0μg) is \(1/10^\text{th} \) that of several other licensed VLP-based vaccines and past non-VBI CMV candidates

• There is strong scientific rationale to support that higher doses of VBI-1501A could improve the immunogenicity and efficacy
VBI-1501 (CMV) : Program Milestones

✓ **May 2018** : Top-line data from Phase I clinical study announced

✓ **December 2018** : Following positive discussions with Health Canada, announcement of plans for a Phase II clinical study evaluating safety and immunogenicity of dosages of VBI-1501 up to 20µg with alum

✓ **2019** : Pre-IND conversation with FDA to discuss the planned Phase II study

❑ **Around year-end 2019** : Submission of IND expected
Glioblastoma - VBI-1901

Targeting CMV as a foreign viral antigen approach to Immuno-Oncology (GBM) with a bivalent eVLP expressing two potent CMV antigens – pp65 and gB
Impact and Risks of Cytomegalovirus (CMV)

Solid Tumors:

- 90%+ of some solid tumors, incl. glioblastomas, breast cancers, and medulloblastomas are CMV+

- CMV is not causative, but does influence disease progression of CMV+ tumors

- In multiple clinical studies, CMV-targeting vaccines have increased overall survival in GBM patients

- Because CMV is so broadly (and differentially) expressed on tumor cells, but not on healthy cells, a potent CMV vaccine has potential to make “cold tumors hot”

- GBM is one of the most aggressive cancers with few therapeutic options and no standard of care in the recurrent setting
GBM Phase I/IIa Clinical Study Design

TWO-PART, MULTI-CENTER, OPEN-LABEL, DOSE-ESCALATION STUDY OF VBI-1901 IN PATIENTS WITH RECURRENT GLIOBLASTOMA (GBM)

PART A : Dose-Escalation Phase

- Patient population: Recurrent GBM (any # of recurrences)
- Dose(s):
 - Low – 0.4µg of pp65 → 6 patients enrolled by end of April 2018
 - Intermediate – 2.0µg of pp65 → 6 patients enrolled by end of September 2018
 - High – 10.0µg of pp65 → 6 patients enrolled by end of December 2018

PART B : Extension Phase

- Patient population: Recurrent GBM (first recurrence only)
- Dose(s):
 - 10.0µg of pp65 → selected as optimal dose from Part A based on safety and immunogenicity, enrollment of 10 patients initiated July 2019

Outcome Measures : Part A & B

- Safety
- Immunogenicity: (1) T-cell immunity (gB, pp65), (2) serum anti-gB antibody titers, (3) other immune correlates and biomarkers
- Tumor and clinical responses: Based on MRIs and survival data (progression-free and overall survival)
- Quality of life: Change from baseline, including reduction in steroid use
Overview of Immunologic and Tumor Responses in Part A

DATA FROM ASCO 2019 POSTER PRESENTATION

SAFETY

• VBI-1901 was well-tolerated at all doses, with no safety signals observed

• Grade 2, 3, or 4 adverse events occurred in 66%, 22%, and 11% of participants, respectively – none were related to the vaccine immunotherapeutic

IMMUNOGENICITY AND TUMOR/CLINICAL RESPONSES

• Six (6) patients immunologically responded to VBI-1901, with evidence of robust boosting of CMV-specific immune responses against both gB and pp65 antigens

• Median progression-free survival (PFS) was longer among responders (14.5 weeks) vs. non-responders (6 weeks)

• Three out of six (3/6) patients in the high-dose cohort had evidence of stable disease (SD) by magnetic resonance imaging (MRI), compared to one out of six (1/6) in the low-dose cohort and zero out of six (0/6) in the intermediate-dose cohort
Immunologic Responses vs. Clinical Responses

DATA FROM ASCO 2019 POSTER PRESENTATION

Individual Patients in Part A

Progression Free Survival (weeks)

- Vaccine Non-Responders
- Vaccine Responders
VBI-1901 (GBM) : Program Milestones

- **November 2018** : Announcement of initial immunologic data from Part A of the ongoing Phase I/IIa at the Society for Neuro-oncology (SNO) Meeting

- **December 2018** : Completion of enrollment in Part A of the Phase I/IIa

- **June 2019** : Presentation of expanded immunologic data and tumor and clinical responses at ASCO Annual Meeting

- **July 2019** : Initiation of enrollment in Part B of the Phase I/IIa study

- **Year-end 2019** : Initial immunologic data from Part B expected

- **H1 2020** : Expanded immunologic data and clinical and tumor responses expected
Summary
VBI Vaccines Leadership

MANAGEMENT

Jeff Baxter
President & CEO

Dr. David Anderson, Ph.D.
Chief Scientific Officer

Dr. Francisco Diaz-Mitoma, M.D., Ph.D.
Chief Medical Officer

Chris McNulty
Chief Financial Officer

Nell Beattie
Chief Business Officer

Avi Mazaltov
Global Head of Manufacturing
SciVac General Manager

BOARD OF DIRECTORS

Dr. Steven Gillis (Chairman)

Dr. Michel De Wilde, Ph.D.

Blaine H. McKee, Ph.D.

Joanne Cordeiro
VBI Vaccines Global Footprint

HEADQUARTERS – CAMBRIDGE, MA
- CEO, CSO, CFO, CBO + 3 FTEs
- Central location in biotechnology hub

RESEARCH OPERATIONS – OTTAWA, CANADA
- CMO, Finance + ~25 FTEs
- R&D team and facility

MANUFACTURING FACILITY – REHOVOT, ISRAEL
- ~70 FTEs
- GMP manufacturing facility for the production of Sci-B-Vac®
Summary

ANTICIPATED CATALYSTS THROUGH 2020 YEAR-END:

1. Sci-B-Vac®: Hepatitis B Prophylactic Vaccine
 - Around Year-End 2019 – Top-line results expected from CONSTANT Phase III study
 - Beginning mid-year 2020 – Expected submissions of applications for regulatory approvals in the U.S., Europe, and Canada, subject to CONSTANT data

2. VBI-1901: GBM Vaccine Immunotherapeutic (Immuno-Oncology)
 - Year-End 2019 – Initial immunologic data expected from Part B
 - H1 2020 – Expanded immunologic data and correlations with tumor and clinical responses expected from Part B

3. VBI-2601: Hepatitis B Immunotherapeutic
 - Q4 2019 – Expected start of Phase II clinical proof-of-concept study
 - H2 2020 – Initial human proof-of-concept data readout expected

4. VBI-1501: CMV Prophylactic Vaccine
 - Around Year-End 2019 – Expected IND filing for Phase II dose-ranging study
VBI Vaccines Inc.
222 Third Street, Suite 2241
Cambridge, MA 02142
(617) 830-3031
info@vbivaccines.com