eVLPs as an Antigen Delivery & Immunomodulatory Platform in Cancer

World Vaccine Congress Europe 2019
Certain statements in this presentation that are forward-looking and not statements of historical fact are forward-looking statements within the meaning of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and are forward-looking information within the meaning of Canadian securities laws (collectively “forward-looking statements”). The company cautions that such statements involve risks and uncertainties that may materially affect the company's results of operations. Such forward-looking statements are based on the beliefs of management as well as assumptions made by and information currently available to management. Actual results could differ materially from those contemplated by the forward-looking statements as a result of certain factors, including but not limited to the ability to establish that potential products are efficacious or safe in preclinical or clinical trials; the ability to establish or maintain collaborations on the development of therapeutic candidates; the ability to obtain appropriate or necessary governmental approvals to market potential products; the ability to obtain future funding for developmental products and working capital and to obtain such funding on commercially reasonable terms; the company's ability to manufacture product candidates on a commercial scale or in collaborations with third parties; changes in the size and nature of competitors; the ability to retain key executives and scientists; and the ability to secure and enforce legal rights related to the company's products, including patent protection. A discussion of these and other factors, including risks and uncertainties with respect to the company, is set forth in the Company's filings with the Securities and Exchange Commission and the Canadian securities authorities, including its Annual Report on Form 10-K filed with the Securities and Exchange Commission on February 25, 2019, and filed with the Canadian security authorities at sedar.com on February 25, 2019, as supplemented or amended by the Company's Quarterly Reports on Form 10-Q. The company disclaims any intention or obligation to revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.
Therapeutic Vaccination & Immuno-Oncology
The Immuno-Oncology Renaissance Depends on an Ability to Activate Anti-Tumor Immunity via Appropriate Antigen Selection

Historic Context of Cancer Vaccines

- Historically, cancer vaccines have consisted of weakly immunogenic “self” tumor associated antigens (TAA)
 - Central tolerance naturally limits potent responses to “self” TAA
- PD-1 & CTLA-4 blockade success explained by mutation frequency – “neoantigens”
 - Occur in frequently mutating/inflamed/“hot” tumors
 - Enhance immunogenicity in the context of PD-1 or CTLA-4 mAb blockade
- Foreign viral antigens are inherently immunogenic
 - Our body has large repertoires of pre-existing anti-viral T cells (e.g. against CMV, EBV)
 - Opportunity for off-the-shelf therapy
- Tumor-associated viral antigens (“TAVA”) make an ideal antigenic target

Schumacher & Schrieber, Science, April 2015
Evidence for Cytomegalovirus (CMV) as a Target Antigen in GBM (1)

Multiple labs have confirmed presence of CMV antigens in GBM tumor samples but NOT in adjacent healthy tissue

- **Cobbs CS (2002)**
 - Immunohistochemical (IHC) staining with CMV pp65 antibody confirmed expression in 22/22 GBM tumor samples
 - No CMV expression in normal brain tissue (n=5), stroke tissue (n=4), and brain tissue from Alzheimer’s subjects (n=3)
 - *In situ* hybridization (ISH) with CMV-specific probes confirmed reactivity in 8/8 GBM samples but no reactivity in normal brain tissue (n=4), stroke tissue (n=1) or Alzheimer’s brain tissue (n=2)

- **Mitchell DA (2007)**
 - IHC staining with CMV IE-1 antibody confirmed expression in 42/45 GBM tumor samples with no expression in surrounding non-tumor brain tissue
 - IHC staining with CMV pp65 antibody confirmed expression in 30/33 GBM tumor samples but no adjacent areas of normal brain
 - ISH with CMV IE1 probe confirmed reactivity in 16/16 GBM samples but not to blood vessels or normal brain
Evidence for CMV as a Target Antigen in GBM (2)

Immuno-histochemical Staining of CMV in GBM Samples

C: negative control Ab
E: pp65 stained GBM sample

Primary GBM Tumors Present Antigens Recognized by CMV Specific T-cells

A

CMV pp65 effectors

Patient 3

Patient 4

Patient 5

Patient 6

Targets
- DC-pp65 RNA
- DC-survivin RNA
- DC-Flu M1 RNA
- DC-GBM tumor RNA
- DC-total cellular RNA
- GBM tumor cells

Nair SK(2014)
Broad Clinical Evidence Supports CMV as an Immunotherapeutic Target in GBM

- **Prins RM (2008)** – Autologous, GBM tumor lysate DC vaccine
 - Single immunization increased CMV pp65-specific CD8+ T cells from 0.2% to 4.4%

- **Crough T (2012)** – Single patient receiving 4 infusions of autologous CMV-specific T-cells
 - MRI revealed improvement with stable disease reported for 17 months

- **Schuessler A (2014)** – 10 patients receiving 3-4 infusions of autologous CMV-specific T-cells
 - 10 recurrent GBM pts, 3-4 infusions of autologous CMV-specific T cells
 - Achieved median OS of 403 days and only minor adverse events

- **Mitchell DA (2015)** – CMV-specific DC vaccine with tetanus pre-conditioning
 - OS (>36.6 months) vs. control cohort with median OS of 18.5 months

- **Batich K (2017)** – CMV-specific DC vaccine with GM-CSF & Temozolomide
 - OS increased (>41.1 months) vs historic control
 - Survival correlated with CMV-pp65-specific INF-γ T-cells
While NOT Causative, CMV is Highly Associated with Multiple Solid Tumors

Glioblastoma
- Over 95% CMV+ and clinical evidence of targeting CMV
- Key references:
 - Lucas KG 2011
 - Nair SK 2014
 - Batick K 2017
 - Penas-Prado 2018

Breast Cancer
- Expressed on over 90% and may modulate tumor macrophages
- Key references:
 - Herbein (2014) Frontiers Oncol
 - B Cox (2010) BJC
 - Harkins LE (2010) Herpesviridae

Other Brain Tumors
- Key references:
 - Wolmer-Solberg N (2013) Int J Cancer
 - Baryawno N (2011) J Clin Invest

Others Requiring Analysis
- CRC, Liver, Prostate
- Prevalence typically ~50% (higher than a standard TAA)

Potential Application to Multiple Cancers

VBI-1901
Enveloped Virus-like Particles (eVLPs)
eVLP Platform: Enveloped Virus-Like Particles (eVLPs) Enable Potent Delivery of Tumor Antigens in an Effective Viral Mimic

Flexible, customized antigen delivery in a biologically relevant construct
eVLP Platform: eVLPs Persist at Injection Site After Intradermal Administration

Biodistribution study demonstrates eVLP persistence at injection site after 14 days with no accumulation in major organs.
eVLP Platform: eVLPs Appear Within Hours of Injection in Draining Lymph Nodes

eVLP uptake is predominantly by dendritic cells
eVLP Platform: eVLP Particles Stimulate Innate Immunity

eVLP particles stimulate pro-inflammatory cytokines – enhanced by inclusion of CMV gB antigen

Note: Human monocytes were purified by negative selection to >90% purity and stimulated with increasing concentrations of eVLPS. Cytokines were measured by CBA.
VBI-1901: On-going Phase I/IIa Trial in rGBM
VBI’s Cancer Vaccine Approach is Differentiated from Past Attempts

Weaknesses of Past Cancer Vaccines

- **Lack of Inherent Potency**
 Targeting self (or near self) tumor antigens limits potency due to central tolerance

- **Lack of Balanced Immunity**
 The importance of CD4 T-cell immunity was poorly understood

- **Lack of Breadth**
 Typically short peptide antigens – often limited to single epitopes – HLA restricted

- **Poorly Immunogenic Delivery**
 Peptides in emulsions & DNA delivery are poorly immunogenic

The VBI Approach

- Target CMV+ tumors, where ‘anti-viral’ immunogenicity dwarfs ‘anti-self’

- VBI induces both CD4+ and CD8+ immunity

- Both gB & pp65 are “full length” to provide multiplicity of epitopes

- eVLPs are naturally presented to DCs and stimulate innate & adaptive immunity
Glioblastoma (GBM) Study Population

Aggressive disease with decreasing prognosis each successive recurrence

Glioblastoma Treatment Paradigm

- **Primary GBM**
 - *Standard of Care*: Surgical resection + radiotherapy + chemotherapy
 - *Median Overall Survival*: ~ 16 months
 - Stable disease is transient, recurrence inevitable

- **Recurrent GBM (1st recurrence)**
 - *Standard of Care*: Repeat rounds of chemotherapy, re-op surgery in limited cases
 - *Median Overall Survival*: ~8 months, ~30% achieve 12-months OS
 - Stable disease is rare, tumors tend to double in size between MRIs during progressive disease

- **Multiple recurrent GBM**
 - *Standard of Care*: None, typically hospice care or clinical trials
 - Profound, rapid growth of tumor leading to death

VBI-1901 Trial Population

<table>
<thead>
<tr>
<th></th>
<th># Tumor Recurrences</th>
<th>Median Age</th>
<th>Baseline Tumor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A</td>
<td>1.83</td>
<td>52</td>
<td>921mm² (mean)</td>
</tr>
<tr>
<td>Part B</td>
<td>1</td>
<td>TBD</td>
<td>Limit to 400mm²</td>
</tr>
</tbody>
</table>
GBM, Ki-67 and CD3 Stained, 100x
Two-part, multi-center, open-label, dose-escalation study of VBI-1901 in patients with recurrent glioblastoma (GBM)

PART A : Dose-Escalation Phase

Patient population :
Recurrent GBM (any # of recurrences)

Study Arm 3:
High Dose – 10.0µg + GM-CSF

N=6
Enrollment completed December 2018

Study Arm 2:
Intermediate Dose – 2.0µg + GM-CSF

N=6
Enrollment completed September 2018

Study Arm 1:
Low Dose – 0.4µg + GM-CSF

N=6
Enrollment completed April 2018

PART B : Extension Phase

Patient population :
First Recurrent GBM

Study Arm 1:
10.0µg + GM-CSF

N=10
Enrollment initiated July 2019

Study Arm 2:
10.0µg + GSK's AS01B adjuvant system

N=10
Enrollment expected to initiate Q4 2019

New arm added to Part B of study

Outcome Measures : Part A & B

- **Safety**
- **Immunogenicity** : (1) T-cell immunity (gB, pp65), (2) serum anti-gB antibody titers, (3) other immune correlates and biomarkers
- **Tumor and clinical responses** : Based on MRIs and survival data
- **Quality of life** : Change from baseline
Overview of Immunologic and Tumor Responses in Part A

DATA FROM ASCO 2019 POSTER PRESENTATION

<table>
<thead>
<tr>
<th>Patient</th>
<th>Prior Recurrences</th>
<th>Age / Sex / KPS</th>
<th>Vaccine-Induced Response</th>
<th>Tumor Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMV gB ELISPOT</td>
<td>CMV pp65 ELISPOT</td>
</tr>
<tr>
<td>LOW DOSE COHORT - 0.4µg of pp65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-003</td>
<td>2</td>
<td>64 / F / 70</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>01-005</td>
<td>2</td>
<td>39 / M / 90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>01-004</td>
<td>2</td>
<td>58 / M / 80</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>01-006</td>
<td>2</td>
<td>66 / F / 80</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>01-007</td>
<td>2</td>
<td>44 / M / 80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>01-009</td>
<td>6</td>
<td>57 / M / 70</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>INTERMEDIATE DOSE COHORT - 2.0µg of pp65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-012</td>
<td>1</td>
<td>59 / M / 80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>01-013</td>
<td>2</td>
<td>45 / F / 70</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>01-015</td>
<td>1</td>
<td>39 / M / 70</td>
<td>Data not available</td>
<td></td>
</tr>
<tr>
<td>01-016</td>
<td>3</td>
<td>53 / M / 90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>03-001</td>
<td>1</td>
<td>54 / F / 70</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>03-002</td>
<td>1</td>
<td>43 / M / 70</td>
<td>Data not available</td>
<td></td>
</tr>
<tr>
<td>HIGH DOSE COHORT - 10.0µg of pp65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-017</td>
<td>2</td>
<td>47 / M / 90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>03-003</td>
<td>1</td>
<td>43 / M / 80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>01-018</td>
<td>2</td>
<td>65 / M / 90</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>03-004</td>
<td>1</td>
<td>53 / M / 90</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>01-020</td>
<td>1</td>
<td>54 / F / 70</td>
<td>Data not available</td>
<td></td>
</tr>
<tr>
<td>03-006</td>
<td>1</td>
<td>56 / F / 70</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Impact of Vaccination on CMV-Specific Immunity in Part

A Vaccine Responders

Patient 01-003

Patient 03-003

Vaccine Non-Responders

Examples illustrative of all non-responders

Patient 01-007

Patient 03-004

Patient 01-006

Patient 01-013

Patient 01-012

Patient 03-006

Patient 01-009

Patient 01-018
Circulating Immunosuppressive Tregs Decline After VBI-1901 Vaccination

An increased frequency of Tregs circulating in GBM patients suppresses anti-tumor immunity (Fecci PE, 2006)
VBI-1901 Expands CD4⁺ T Cells Against Both gB and pp65 Antigens

Vaccine Responders

Vaccine Non-Responder

- **pp65-specific**
- **gB-specific**
VBI-1901 Expands gB-Specific CD8⁺ T Cells in Vaccine Responders

CMV⁺ Healthy Subject

- Unstimulated
- gB stimulation
- pp65 stimulation
- PMA/iono

Ki67⁺

Proliferating Ki67⁺ CD8⁺ T cell (%)

Time (months)

03-004
03-006
01-013
Progression-Free Survival Among Vaccine Responders & Non-Responders

DATA FROM ASCO 2019 POSTER PRESENTATION

Individual Patients in Part A

Progression Free Survival (weeks)

- Vaccine Non-Responders
- Vaccine Responders
Summary of Vaccine Responses vs. Tumor Responses

Tumor responses in 3 patients in High Dose Cohort that responded to vaccination

Radiotherapy was completed > 6 months prior to Tx with VBI-1901
Part A Summary

VBI-1901 Demonstrated Excellent Safety & Promising Immunogenicity & Tumor Impact

• **Vaccine Safe & Well Tolerated**
 - No vaccine-associated SAEs
 - No evidence for vaccine-induced cerebral edema

• **Vaccine Response Impacted Tumor Response**
 - 4 of 6 vaccine responders had MRI confirmed Stable Disease > 12 weeks (vs 0 of 9 evaluable non-responders)
 - Median PFS is significantly longer among vaccine responders vs. non-responders (14.5 weeks vs. 6 weeks, respectively)

• **High Dose Selected for Part B**
 - 3/6 patients in the high dose cohort had evidence of stable disease by MRI compared to 1/6 and 0/6 patients in the low and intermediate dose cohorts
Part B Extension Phase of Trial – 1st Patient Dosed in July

Part A has informed protocol changes that may enhance ability to observe efficacy signals in Part B

PART B

- Only patients with 1st tumor recurrence will be enrolled
 - Recurrent patients will be healthier than those in Part A of the trial with more intact immune systems
 - 10 subjects in Part A of trial had 2 or more prior recurrences
 - 3/4 subjects with SD for 3 months or longer had single recurrence

- **Tumor area no greater than 400mm² at baseline (including resection of 1st recurrent tumors)**
 - The mean area of tumor in Part A was 921mm² (186mm²-1980mm²)
 - Baseline tumors in 4 patients with SD for 3 months or longer were 186mm², 237mm², 544mm², and 955mm²

- All patients in Part B of trial will receive the optimal (10µg pp65) dose of VBI-1901
 - The highest dose of VBI-1901 induced SD for 3 months (2 MRI scans) in 3/6 subjects

- All patients will remain on protocol until clinical (rather than MRI) progression
 - Greater opportunity for repeat dosing/benefit from vaccine response
eVLP Expression of Immuno-Modulatory Molecules
Further Expansion of the eVLP Platform into Immuno-Oncology

Multiple Exemplars of eVLP Constructs have Clinical & Preclinical Proof of Concept

<table>
<thead>
<tr>
<th>Infectious Disease</th>
<th>Immuno-Oncology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylactic CMV (VBI-1501)</td>
<td>Prophylactic Zika (VBI-2501)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schematic</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construct Design</th>
<th>Monovalent: Modified gB-G</th>
<th>Bivalent: Modified-E / NS1</th>
<th>Bivalent: gB / pp65 (major CD4, CD8 & Ab epitopes)</th>
<th>Bivalent with Immuno-modulatory protein</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Alum</th>
<th>Alum</th>
<th>GM-CSF</th>
<th>Self Adjuvanted</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Most Advanced Development Stage</th>
<th>Ph I complete</th>
<th>Preclinical</th>
<th>Ph I/II ongoing</th>
<th>Preclinical</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Key Features</th>
<th>Modified gB elicits fibroblast & epithelial cell neutralization</th>
<th>Modified-E enhances neutralizing responses</th>
<th>Internal antigen expression elicits T cell immunity</th>
<th>Immunomodulatory proteins can enhance antigen-specific Th1 immunity</th>
</tr>
</thead>
</table>

- Modified gB-G
- Modified-E
- NS1
- Bivalent with Immuno-modulatory protein
- Alum
- GM-CSF
- Ph I complete
- Preclinical
- Preclinical
- Modified gB elicits fibroblast & epithelial cell neutralization
- Modified-E enhances neutralizing responses
- Internal antigen expression elicits T cell immunity
- Immunomodulatory proteins can enhance antigen-specific Th1 immunity
Lipid Bilayer Surrounding eVLPs Enables CD40L Trimerization and Function

B cells up-regulate HLA-DR & CD86 in response to trimeric CD40L
VBI-2701 is Comparable to VBI-1901 + GM-CSF in Terms of T Cell Activation

Intratumoral injection of eVLPs expressing immunomodulatory molecules may be used to inflame “cold” tumors and synergize with systemic vaccination.
Potential ‘Off-the-Shelf’ Vaccines for CMV+ Solid Tumors

<table>
<thead>
<tr>
<th>Off-the-Shelf Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leverages potency of foreign viral antigens to restimulate pre-existing immunity</td>
</tr>
<tr>
<td>• CMV is a highly immunogenic viral target</td>
</tr>
<tr>
<td>• Easily manufacturable and scalable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Broad Potential in CMV+ Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Over 95% of glioblastomas, medulloblastomas, & breast cancers are CMV+</td>
</tr>
<tr>
<td>• Harness & restimulate pre-existing anti-viral immunity to clear antigen+ tumors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMV an Attractive Target w/ Clinical Proof-of-Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerous CMV-targeting therapies have achieved encouraging clinical activity in GBM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VBI-1901: Strong Clinical Rationale & Positive Early Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clean safety profile through DSMB review of three dose cohorts from Part A of trial</td>
</tr>
<tr>
<td>• Phase I data indicate productive restimulation of CMV immunity with VBI-1901</td>
</tr>
<tr>
<td>• Anti-CMV responses correlating with tumor response & PFS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eVLP Platform & IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flexible, engineered antigen delivery capable of potent antibody & T cell responses in humans</td>
</tr>
<tr>
<td>• Immunomodulatory molecules that activate APCs and/or T cells may be used to inflame “cold” tumors and enhance therapeutic vaccination</td>
</tr>
</tbody>
</table>