Interim Results of the Extension Phase of a Phase I/IIa Trial of a Therapeutic CMV Vaccine Against Recurrent Glioblastoma (GBM)

PY Wen1, DA Reardon1, EQ Lee1, FM Iwamoto2, D Forst3, F Diaz-Mitoma4, DE Anderson4, AB Lassman2

1Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 2Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 3Department of Neurology, MGH, Boston, MA 4VBI Vaccines, Cambridge, MA

Background
- Cytomegalovirus (CMV) antigens are reported in >90% of GBMs
- "Foreign" tumor-associated viral antigens are inherently immunogenic
- gB and pp65 antigens are the most frequent CMV targets for CD4+ and CD8+ T-cells
 - CD8+ T cells are critical for killing of tumor cells
 - CD4+ effector memory (CCR7-CD45RA-) cells preferentially migrate to the tumor microenvironment and are critical for CD8+ T cell persistence and function
- Targeting CMV as a foreign viral antigen has the potential to harness, re-stimulate, and re-focus pre-existing anti-CMV immunity to clear CMV+ tumors
- VBI-1901 is a bivalent gB/pp65 enveloped virus-like particle (vLP) formulated with GM-CSF and given as an intradermal injection
- VBI-1901 is currently in a Phase I/IIa clinical trial in recurrent GBM patients

About VBI-1901
Rationally-designed vaccine immuno-therapeutic for CMV+ solid tumors

Schematic

Antibody Target
gB (CD4+), pp65 (CD8+)

T Cell Targets
Treatment of CMV+ solid tumors, notably glioblastoma

Target Indication
Targets multiple antigens, each with multiple epitopes, to promote broad immunity & avoid tumor escape

Rationale
Co-administered with GM-CSF via intradermal route

Phase I/IIa Trial Design
Two-part, multi-center, open-label, dose-escalation study of VBI-1901 in patients with recurrent GBM

PART A : Dose-Escalation Phase
Patient population: Recurrent GBM (any # of recurrences)

Study Arm 3: High Dose
10.0 µg + GM-CSF
N=6
VS.
Study Arm 2: Intermediate Dose
2.0 µg + GM-CSF
N=6

Study Arm 1: Low Dose
0.4 µg + GM-CSF
N=6

Outcome Measures : Part A & B
- Safety
- Immunogenicity: (1) T-cell immunity (gB, pp65), (2) serum anti-gB antibody titers, (3) other immune biomarkers
- Tumor and clinical responses: Based on MRIs and survival data
- Quality of life: Change from baseline

PART B: Extension Phase
Patient population: First Recurrent GBM

Study Arm 1: 10.0 µg + GM-CSF (i.d.)
N=10

Study Arm 2: 10.0 µg + GSK’s AS01b Adjuvant System (i.m.)
N=10

ClinicalTrials.Gov identifier: NCT03382977

Enrollment Status
As of Nov. 18, 2019
- Enrollment of 18 subjects across all dose levels in Part A completed in December 2018 – 0 dose-limiting toxicities (DLTs) were observed
 - Median age of enrolled patients was 57.5, 49.0, and 53.5 years in the Low-, Intermediate-, and High-Dose cohorts, respectively (range 39 – 66 years)
- Enrollment of 10 subjects in the Part B 10.0 µg + GM-CSF arm is ongoing – to-date four (4) patients have been enrolled
 - Median age of enrolled patients is 61.5 years (range 50 – 63 years)
- Karnofsky Performance Scale (KPS) score is similar across all cohorts in Part A and those enrolled to-date in Part B (80, 70, 85, and 85 in the Low-, Intermediate-, and High-Dose cohorts in Part A, and the patients enrolled in Part B, respectively)
- Initiation of enrollment of 10 subjects in the 10.0 µg + AS01b arm is expected around year-end 2019, subject to FDA acceptance of the amended protocol and investigational site institutional review board approvals

Impact of Vaccination on Tumor Response & CMV-Specific Immunity—Patient-Specific Responder Data

Table: Tumor Responders in High-Dose Cohort

<table>
<thead>
<tr>
<th>Subject</th>
<th>Available Data on Enrolled Subjects</th>
<th>Tumor Responders in High-Dose Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 03</td>
<td>1 recurrence</td>
<td>Subject 04-002</td>
</tr>
<tr>
<td>Subject 04</td>
<td>1 recurrence</td>
<td>Subject 03-007</td>
</tr>
<tr>
<td>Subject 05</td>
<td>1 recurrence</td>
<td>Subject 03-006</td>
</tr>
<tr>
<td>Subject 06</td>
<td>1 recurrence</td>
<td>Subject 03-003</td>
</tr>
</tbody>
</table>

Tumor Responses (Magnetic Resonance Imaging – MRI)

- ~33% reduction in tumor seen to-date
- Stable Disease (SD) based on 2 consecutive scans
- Presumed pseudo-progression based on 1st MRI
- Surgical resection to assess PD versus T cell infiltration/tumor necrosis
- ~60% reduction seen in Lesion 1
- Lesion 2 appeared after 4.5 months, defined PD per protocol, though patient was clinically stable
- ~60% reduction seen in Lesion 2 with associated cyst required surgical resection of lesions
- Initial tumor progression later presumed to be pseudo-progression due to subsequent tumor stabilization (atypical of rGBM)

ELISPOT T Cell Responses

CD8+ T Cell Responses

- Data not available

CD4+ Effector Memory T Cell Responses

- Data not available

Conclusions
- No dose-limiting toxicities (DLTs) or vaccine-related safety signals observed
- First patient enrolled in Part B had evidence of stable disease, with 33% tumor reduction to-date
- Robust CD8+ & CD4+ T cell responses induced in some patients receiving High (10µg) dose in both Parts A & B of trial
- Further characterization of baseline biomarkers and immunologic responses are ongoing to assess potential vaccine and tumor responders
- Correlations between immunological biomarkers and tumor/clinical responses will be refined as more patients are enrolled in Part B of the trial

Contact Information
Dr. Andrew Lassman
abl7@cumc.columbia.edu

Dr. David E. Anderson
danderson@vbi.vibevaccines.com